Optimization of Process Parameters for Biodiesel Production Using Response Surface Methodology
Emmanuel I. Bello,
Tunde I. Ogedengbe,
Labunmi Lajide,
Ilesanmi. A. Daniyan
Issue:
Volume 4, Issue 2, March 2016
Pages:
8-16
Received:
17 November 2015
Accepted:
29 November 2015
Published:
20 April 2016
Abstract: The effect of five process parameters namely: reaction time, reaction temperature, stir speed, catalyst concentration and methanol-oil ratio on the transesterification process of waste frying oil to biodiesel were investigated. Optimization of the five process parameters and their quadratic cross effect was carried out using a four level-five factor central composite experimental design model and response surface methodology with each factor varied over four levels. Taking the biodiesel yield as the response of the designed experiment, the data obtained were statistically analysed to get a suitable model for optimization of biodiesel yield as a function of the five independent process parameters. The optimization produced 30 feasible solutions whose desirability equals to 1 and the selected (most desirable) condition was found to be: reaction time (3 hrs), reaction temperature (58°C), stir speed (305.5 rpm), catalyst concentration (1.4 wt%) and methanol to oil ratio (6:1), while the optimum yield of biodiesel for this condition was found to be 91.6%. The developed model was tested and validated for adequacy by substituting random experimental values as input parameters and the output parameters from the developed model were close to the experimental values. The biodiesel properties were characterized and the results obtained were found to satisfy the standard for both the ASTM D 6751 and EN 14214.
Abstract: The effect of five process parameters namely: reaction time, reaction temperature, stir speed, catalyst concentration and methanol-oil ratio on the transesterification process of waste frying oil to biodiesel were investigated. Optimization of the five process parameters and their quadratic cross effect was carried out using a four level-five facto...
Show More
Impact of Atmospheric Parameters on Power Generation of Wind Turbine
Ravindra B. Sholapurkar,
Yogesh S. Mahajan
Issue:
Volume 4, Issue 2, March 2016
Pages:
17-25
Received:
27 April 2016
Accepted:
13 May 2016
Published:
30 May 2016
Abstract: Economic growth of any country depends on access to reliable energy. Wind energy is fast gaining importance among non-conventional sources, which is a function of parameters like topography of the terrain, weather conditions etc. The present work explores the potential of a 225 MW turbine located in a mountainous site in Maharashtra, India. Values of wind velocity, air temperature, density and power generation were recorded for one complete year. Analysis was done using power curves. The results show that the energy output of wind turbine is based on power curves of a specific site. The conceptual features such as energy per rated power, efficiency of wind turbine and average energy per hour are calculated. It is useful for the investor to access the wind turbine pay-back period and adopt of new optimizing technique.
Abstract: Economic growth of any country depends on access to reliable energy. Wind energy is fast gaining importance among non-conventional sources, which is a function of parameters like topography of the terrain, weather conditions etc. The present work explores the potential of a 225 MW turbine located in a mountainous site in Maharashtra, India. Values ...
Show More