Volume 7, Issue 3, September 2019, Page: 55-63
Optimization of a Thermoelectric Cooling System with Peltier Effect
Louis Okotaka Ebale, Laboratoire de Mécanique, Energétique et Ingénierie, Ecole Nationale Supérieure Polytechnique, Université Marien Ngouabi, Brazzaville, Congo
Landry Jean Pierre Gomat, Laboratoire de Mécanique, Energétique et Ingénierie, Ecole Nationale Supérieure Polytechnique, Université Marien Ngouabi, Brazzaville, Congo
Nzonzolo, Laboratoire Genie Electrique et Electronique, Ecole Nationale Supérieure Polytechnique, Université Marien Ngouabi, Brazzaville, Congo
Marc Romaric Mavoungou, Laboratoire de Mécanique, Energétique et Ingénierie, Ecole Nationale Supérieure Polytechnique, Université Marien Ngouabi, Brazzaville, Congo
Feldha Kibongani, Laboratoire de Mécanique, Energétique et Ingénierie, Ecole Nationale Supérieure Polytechnique, Université Marien Ngouabi, Brazzaville, Congo
Received: Sep. 25, 2019;       Accepted: Oct. 8, 2019;       Published: Oct. 20, 2019
DOI: 10.11648/j.ajee.20190703.11      View  37      Downloads  8
Abstract
The use of the Peltier effect for the cooling of a cooler powered by photovoltaic energy is a solution for the conservation of foodstuffs or pharmaceuticals when conditions as well geographical and climatic become difficult. Only a problem often arises with the choice of the supply current. Indeed, a choice of the supply current too low will produce less cold while a choice of too much supply current (very close to the maximum value indicated by the manufacturer of the module) will produce more cold, but the module will work in saturation, which will reduce its life. This article proposes to present the possibility of optimizing a thermoelectric refrigeration installation. In particular: by improving the performances of the installation, by maximizing the coefficient of performance and the cooling capacity as a function of the power supply current of the Peltier effect module (of the TEC1-12706 type). Thus, to solve this problem, we propose an optimization of the thermoelectric installation while passing by the method of the derivatives which will make it possible to find this optimal current. This optimal current will be average current corresponding to the performance coefficient and the current for which the refrigeration power becomes maximum.
Keywords
Thermoelectric Cooling, Thermoelectric Modules, Peltier, Seebeck, Optimization, Coefficient of Performance
To cite this article
Louis Okotaka Ebale, Landry Jean Pierre Gomat, Nzonzolo, Marc Romaric Mavoungou, Feldha Kibongani, Optimization of a Thermoelectric Cooling System with Peltier Effect, American Journal of Energy Engineering. Vol. 7, No. 3, 2019, pp. 55-63. doi: 10.11648/j.ajee.20190703.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Luis David Palatiño López (2004). Caractérisation des propriétés thermoélectriques des composants en régime harmonique: Technique et Modélisation. Thèse de doctorat, Université de Bordeaux 1, Ecole Doctorale des Sciences Physiques et de l’Ingénieur.
[2]
Véronique DA ROS (2008). Transport dans le composés tyhemoélectriques Skutterudites de type RxCO4-yNi ySb12 (R = Nd, Yb et In). Thèse de doctorat, Université de Lorraine, Institut National Polytechnique de Lorraine.
[3]
Jean David GRENON (2016). Système de mesure des propriétés thermoélectriques appliqués au phosphore noire. Mémoire, Université de Montréal, Eole Polytechnique de Montréal.
[4]
Jean Baptiste VANEY (2014). Contribution à l’étude des propriétés de vitrocéramiques et verres de chalcogénures semi-onducteurs. Thèse de doctorat, Université de Lorraine, Institut Jean Lamour (Nancy)-Institut Charles Gerhard (Montpelier).
[5]
Renaud de la Taille-Pierre Courbier (1984). La physique amusante/Science et vie. Collection Savoir et Comprendre. 24 expériences réalisées par Science et vie-Pierron. Pages 6367.
[6]
Pierre CHAPOUL, Christophe DOM, Paul GALLAIS, Kevin GUERINEAU, Jean Baptiste MOUSSARD (2008). Conversion de la chaleur en électricité: Etude du module thermoélectrique à effet Peltier. Rapport du projet de physique, Institut National des Sciences Appliquées de Rouen. Pages 2.
[7]
Robert OTEY et Barry MOSKOWITZ (2001). Thermoelectric coolers offer efficient solid-stade heat management options. oe magazine.
[8]
J. G. STOCKHOLM (2002). Générateur thermoélectrique, Énergie potable: autonomie et intégration dans l’environnement humain. -Cachan-Journées électrotechniques du club EEA.
[9]
Pr. Dr. Ing. Radcenco VSEVOLOD Sef Lucr. Ing. Porneală SAVA Asist. Ing. Alexandru DOBROVICESCU (1983). Processe in instalatii frigorice. EDITURA DIDACTICĂ PEDAGOGICĂ, BUCURESTI. Pages 359-365.
[10]
Pierre CHAPOUL, Christophe DOM, Paul GALLAIS, Kevin GUERINEAU, Jean Baptiste MOUSSARD (2008). Conversion de la chaleur en électricité: Etude du module thermoélectrique à effet Peltier. Rapport du projet de physique, Institut National des Sciences Appliquées de Rouen. Pages 22-23.
[11]
Camille FAVAREL (2014). Optimisation de générateurs thermoélectriques pour la production d’électricité. Thèse de doctorat, Université de Pau et des pays de L’Adour, École Doctorale des Sciences Exactes et de leurs Applications. Spécialité: Génie Électrique/Énergétique.
[12]
Zhang HY, Mui YC, Tarin M. Analysis of thermoelectric cooler performance high power electronic packages. Appl Therm Eng (2010); 30: 561–8. http://dx.doi.org/10.1016/j.applthermaleng.2009.10.020.
[13]
María Ibañez-Puy, Javier Bermejo-Busto, César Martín-Gómez, Marina Vidaurre-Arbizu, José Antonio Sacristán-Fernández, Thermoelectric cooling heating unit performance under real conditions Applied Energy 200 (2017) 303–314. http://dx.doi.org/10.1016/j.apenergy.2017.05.020.
[14]
Marco Nesarajah and and Georg Frey, Thermoelectric Power Generation: Peltier Element versus Thermoelectric Generator, 978-1-5090-3474-1/16/$31.00 (2016) IEEE.
[15]
Xiao Zhang, Li-Dong Zhao, Thermoelectric materials: energy conversion between heat and electricity, Journal of Materiomics (2015), doi: 10.1016/j.jmat.2015.01.001.
[16]
Zeki Yilmazoglu, Experimental and numerical investigation of a prototype thermoelectric heating and cooling unit, Energy and Buildings (2015), http://dx.doi.org/10.1016/j.enbuild.2015.12.046.
[17]
Hamidreza Najafi, Keith A. Woodbury, Optimization of a cooling system based on Peltier effect for photovoltaic cells, Solar Energy 91 (2013) 152-160. http://dx.doi.org/10.1016/j.solener.2013.01.026.
Browse journals by subject